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ABSTRACT 

2 x 3 6  
This report  considers a multivariable system, described by the 

P-canonical structure,  utilizing two digital controllers, one in the for - 
ward loop and one in the feedback loop. The controllers a r e  designed 

to obtain the fastest e r ror - f ree  and ripple-free input -output responses, 

and the fastest neutralization of disturbances. 

fundamental to the design, the matrix I(, relating the output response 

and the input response, and the matrix L, relating the output due to 

a disturbance in the system forward loop to the disturbance itself. 

The performance criteria,  the fundamental requirements for interacting 

or non-interacting systems and the conditions for independent output 

restoration are implemented directly into these two matrices. 

matr ices  are restricted by the natureof the inputs, the disturbances and 

by the plant itself. The advantages of the proposed design method are 

as follows: the chosen configuration of the digital controllers used in 

the structure does not require that extra restrictions be placed on the 

K matrix if the plant is unstable; the system is designed as an n variable 

system and does not use  n single variable systems constructed artifi- 

cially from the original multivariable system, while retaining a relati-  

vely simple design procedure. 

Two matr ices  a r e  

The 

ii 
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INTRODUCTION 

A particular method for the optimal design of digital controllers 

for a large class of multivariable systems has been chosen and developed. 

The method chosen is based extensively on a paper  by Hung5, on single 

variable systems. Hung utilized two digital controllers, one in the for- 

ward loop and one in the feedback loop of a sampled data control system. 

There are two distinct advantages in this controller configuration. 

using two controllers the desired input-output response could be obtained 

independently of disturbances acting on the system (anywhere other than 

a t  the input). By having one controller in the feedback loop the input- 

output response w a s  not affected by unstable plant. There has been some 

fairly recent work on the design of controllers for multivariable systems 

but compared with that m single variable systems it  can hardly be con- 

sidered extensive. 

extending the single variable method to multivariable systems, has several  

factors to commend it. 

By 

6,7 , 

The method resulting from this paper, obtained from 

These are itemized and discussed briefly. 

1) General system criteria, which will  be introduced later, such 

as: 
independent output restoration, 

interacting sys  tern, 

non- int e r ac  ting system, 

are implemented as the frrst step in the design. 

the two basic transmission matrices a r e  diagonal o r  non-diagonal. 

two matrices, K and L, will be introduced more fully later. 

They.de;tkrmine whether 

These 

2 )  
these matrices. 

of this paper, and as long as these restrictions are included K and L may 

be otherwise chosen as desired. If one controller is placed in the feed- 

back loop then the input-output matrix, K, is unrestricted by unstable 

plant. 

The system itself places certain essential restrictions on 

Obtaining these restrictions is the essence of the bulk 



3)  The cr i te r ia  determining the output of the system, Minimal 

Prototype or Ripple Free,  and elimination of the disturbance effect, a r e  

implemented directly in the basic matrices K and L. 

Thus the method of designing in te rms  of the two basic matr ices  

t ies together the general system criteria,  and involves at the same time 

the restrictions essential to obtain the desired type of output response. 

4)  The resulting method developed in the paper permits a " t rue"  

multivariable design: the system does not have to be broken down into 

an equivalent number of single variable systems , with  its consequent 

divorce From thei ad tua l~mju~Pt i~ rka$~e~pro~ le  m. 

7 

For  a general multivariable system, with n inputs and n outputs, 

matrix notation may be used. Capital l e t te rs  denote a matrix and lower- 

case  le t ters  the elements of a matrix, for example 

R = R(z) is the input matrix. 

r = r .(z) is the th element of the input matrix R. 
j J  

c =  

Referring to Fig. 

Input, R = 

c1 

2 C 

! 
I ' 
I 
I 
I 

C 

\ 

1 

I 
I 

C 

j 

n 

output, 

where C(z) is the output due to R(z) acting independently of the distur- 

bance. 

Similarly, 



3 

c 
0 



4 

. '  

u1 

, 2  
U 

I 

I 

I 

I 

U =  

U 
j 

1 

I 

I 

U n 

C '  

C '  
1 2  
I 

# 

I 

I 

C' = 

C '  
l j  
I 
I 

I 

n C '  

where C' is the output due to the disturbance, U acting alone. 

If there is a relationship between C and R of the form, 

c=KR (1) 
where K is an n by n matrix, then the systsili x a y  be structurally classi- 

fied as 'P-  canonica l  . A large c lass  of systems may be represented by 

this structure and this paper is concerned only with this structure. 

been named by Freeman' as "independent output restoration".  A system 

is said to have independent output restoration i f  changes in the individual 

outputs of the system donot affect the other outputs. The P-CWmnical 

s t ructure  conveniently describes such systems. 

s t ructure  of the system to the P-Canonical is, for many practical  cases,  

not a disadvantage. 

b 4 

. 
A very desirable practical feature of multivariable systems has 

Thus restricting the 

From Equation (1) , 

c1 11 1 1 2  2 1P P In n = k r + k r + - . e +  k r +*.+k r 

th and for the j output, 

where k. 
to the jtJprow and the pth column. 

is the element of K, the input transmission matrix, belonging 

From Equation ( 2 )  it is clear that, in general, each output is de- 

pendent upon all of the inputs, and when any one output, say  c .  is dependent 
J 
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upon more than one input the system is termed 

c .  is dependent only upon r .  (for all j )  the system is termed "non- 

interacting". Fo r  a non-interacting system i t  is clear  that K is a di- 

agonal matrix. 

interacting". When 

J J 

Just  as C has been related to R by the input transmission matrix 

K, C l  may be related to U by an n by n matrix L, the disturbance t rans-  

mission matrix, so  that, 

C' = LU. (3)  
It will  now be shown that fo r  independent output restoration L 

must be a diagonal matrix. Suppose L is not a diagonal matrix, then in 

general, 

c '  = 1. u + l .  u + * * + 1 .  u + * . + 1  u (4) 

jp 

j j1 1 32 2 JP P jn n 

is the element of L corresponding to the jth row and the p th where 1 

column of L. It is evident from Eq. (4) that a disturbance on one output 

wil l  affect all the other outputs. This is contrary to  the desirable feature 

of independent output restoration. Thus so that a change of one output 

does not affect any of the other outputs it is clear  that L must be a di- 

agonal matrix. 
- 

The design cr i ter ia  used in this paper a r e  an integral par t  of the 

design theory and will  in fact be used directly and quantitatively. 

c r i te r ia  are used in describing two different general input responses, 

namely, Minimal Prototype Response, and Ripple Free Response. The 

minimal prototype response requires that the output reach the desired 

value in the least possible number of sampling instants. 

response requires  that steady-state outputs contain no inter-sampling 

ripple. In general the number of sampling instants taken to reach the 

final zero  e r r o r  is greater  for the ripple f ree  system than for the mini- 

mal prototype system response. It is also required that the disturbance 

effect be neutralized a s  soon as possible after i t  appears, and therefore 

C f  must go io zero, at  the sam-pling instants for  a minimal prototype res- 
ponse, o r  without any ripple for a ripple-free system response. 

Two 

The ripple free 



BASIC EQUATIONS 

Referring to Fig. 1, the basic equations will  now be developed. 

Matrix notation is used throughout: E, El,  E2, 

column matrices, representing n-vectors, D1, D2 and G and EI'are n by n 

matrices. 

Since the system is assumed linear, superposition holds true and 

may be treated separately and added together to give the total 

. R, C and C '  are 

0 is the zero matrix, I the identity matrix. 

C and C 

output. The following equations are  derived in Appendix 

variables are used when the disturbance U is considered 

with U = 0, 

With R = 0, 

C '  = [ I + G D l D 2  ) - l T J .  

F rom Equations (1) and -(3), K and L may be re-defined as: 

K =  [ I+GD1D2 ] - l G D 1  

and substituting (8) into (71, 

K =  LGD1 . 
The following equations can also be shown: 

III: primed 
alone, s o  that 

= G - ~ K R  

L = I - K D 2  . 
For independent output 

(5) 

(9) 

restoration L must be a diagonal matrix and from 
6 

Equation (8), GD1D2 must itself be a diagonal matrix. 

condition for independent output restoration. Finally: 

This is Freeman 's  

E;= -G -1 KDZU 

E = b - K ) R .  6 
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The idea lying behind the design method will  now be given. The 

end result  of the design method are the optimal controller matrices D1 

and D that will  give the desired response types. D1 and D2 a r e  defined 

by K, L and G, Equations (11) and (9). G is assumed to be fixed plant. 

By obtaining K and L therefore, D1 and D2 may be obtained. 

K and L however, cannot be chosen arbitrari ly,  but must contain 

certain factors , factors which a r e  necessary for stability considerations 

and the obvious need for having controilers which are physically reali- 

zable. Various restrictions must be placed on K and L therefore, and 

these restrictions determine the response. This response is the opti- 

mum for the structure and the particular G matrix. The remainder of 

this paper is concerned with the determination of these restrictions and 

the practical procedure for determining D1 and D from the resulting 

K and L matrices. Restrictions for four variations are developed. 

Firs t ly  the simpler non-interacting case, for both minimal prototype 

and the extension to ripple-free design. 

is treated, again for minimal prototype and ripple-free designs. 

2 

2 

Secondly the interacting case 



RESTRICTIONS ON SYSTEM TRANSFER FUNCTION 

NON- INTERACTING SYSTEMS 

It has already been stated that K is diagonal. For independent 

output restoration, L and therefore G D l D 2  a r e  diagonal, and from 

Equation (11) it can be seen that KD2 is diagonal. Since KD2 and K a r e  

both diagonal, for the non-interacting system, D2 is also diagonal. Now 

since GD D is a diagocal matrix and D2 is diagonal then G D 1  must also 

be diagonal. 
1 2  

The minimal prototype restrictions will  now be derived, From 

Appendix I, 

e = ( 1  - k . . ) r  
j JJ j 

where k e.  and r .  a r e  the jth elements in their respective matrices. 
jj' J J 

It is assumed that the inputs a r e  deterministically describable by func- 

tions of the form: 

(15) 
-1 m r j  = Aj/ ( l -z  

J J 

) j for all j ,  
- 

where A. is a finite polynomial in z '. Then, i f  e. is to go to zero in 

the steady-state, the denominator of r .  must be contained as zeros in 
J 

(1 - k. .), for all j ,  f rom Equation (14), or 
JJ 

- 1  m ( 1  - k . . )  = (1 - z ) j Fj JJ 
- 

where for all j ,  F .  is a finite polynomial in z '. This restriction on the 

elements of the diagonal K matrix is equivalent to 
J 

k . . ( l )  = 1 
JJ 

k ' . , ( l )  = 0 
JJ 

m -1 
k j (1) = 0 
J j  

- 
where k . .  is differentiated m - 1 times with respect to z ', for all j. 

This is condition 1. 
JJ j 

a 
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The mathematical form of the G matr ix  elements is in general: 

th .th .b.i 0 for the element in the i r o w  and: jAL column. The t e r m  q;; must always 
-.AJ 

0 

j 
be present and also for prac ical plants t 
present. A t e r m  such as  z is called the plant transport  lag If of 

is at least  unity with % i j  ij %%3 -t 
the i ,  jth element. 

F rom Equation (9b 

K = LGDl 

or  

(19) 
-1 -1 D1 = G L K. 

Since GD1 is diagonal, and G is i n  general non-diagonal, D1 must be 

non-diagonal. 

a general expression obtained: 

Equation (19) is treated element-wise in Appendix I and 

1 -1 d. .  = g..  k . . / l . .  
1J 1J JJ JJ 

-1 1 where g. is the i, jth element of G-’, the inverse of G; d . .  is the ele- 

ment of D corresponding to the ith row and j 

L = I- KD,, 1;; wi l l  always contain a constant t e rm in i t s  polynomial in 

lj th 1J 
column. F r o m  1 

-1 JJ -1 z and so unless the transport  lag of l /g . .  is contained in k .  ., then from 
-1J 1 JJ 

(20 ’), i t  will  appear directly in the denominator of dij and would therefore 

give a physically unrealizable element1 dij. 

again, the second restriction on k is then evident. For all  j, k must 

contain the maximum transport lag of l /gij  as i = 1.. . n, a s  a factor in 

its numerator. 

1. Considering Equation (20)  

j j  -1 jj 

This is condition 2. 

Substituting Equation (9 )  into Equation (lo), and since L and 

GD1 a r e  diagonal, 

E2 = DILR 
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F o r  the elements of the column matrix Ea,  in general, f rom Appendix 

I D  
n "=>-I 1 d .  1 r, 

j PP JP P 
e 

p= 1 

where e2 is the jth element of the matrix E2. Also from (12), 
j 

-1 E t 2 =  -G KD,U 
Y 

and from Appendix I 

n 
e? '  = - >g-ji kiidii 2 ui 
J 

i= 1 

where d2i is the iith element of the matrix D2. 
Now consider Equation (zo), 

-- 1 d1.= g.. k . . / l . .  . 
13 13 33 33 
-1 Suppose g . . contains unstable poles, and suppose that they are not can- 

celled by zeros  of k.., then d . .  will contain as its poles the poJes of gij. 

Equation (20) gives 

13 1 -1 
J3 13 

1 -1 k . .  = l . . d . . / g  . 
JJ 53 13 i j  

\ ,  t 249 

-1 
1J 

For the present, any outside zeros of g . . , which from Equation (24)  would 

cause k . .  to be unstable, will be put to one side and dealt with later. 

presence of the unstable poles of gij as poles of d.. is, however, effecting 

a pole-zero cancellation. 

outside poles of any transfer function in a system, always produce insta- 
l bility. In this case, if d.. contains unstable poles, not including those 
1J 

which are outside zeros of l. . ,  for i = 1. . .n, then it is clear from Eq. 

(22)  that e .  will  be unstable, although Equation (24) would not indicate any 

instability of k.. . 

The 
JJ - 1 1 

1J 
Pole-zero cancellations interfering with the 

2 J3 

J 
JJ 



1 1  

-1 Equation (23)  also shows that unless the outside poles of gij  a r e  
21 cancelled by zeros of k.. or d:i, then e will  also be unstable. 

11 j 1 

Then it is evident that to give a stable controller element d.L. and 
-1 1J 

to ensure that e: 'is stable, any unstable poles of gij must be contained 
J 

jj' 
in k... This is the third restriction on .k 

JJ 
For j = 1. . . n, k2, must contain as  its zeros  the outside poles 

-1 JJ -1 of g i j  for i = 1 . . . n. These outside poles of g . . are in fact the zeros 
11 

of the determinant of G. This is condition 3. 
-1 
i j  Returning now to the case where g has  outside zeros  and r e -  

ferr ing again to Equation (.20), 
d i j  1 - - gij -1 k. . / l . .  

JJ JJ 
-1 i t  is clear  that these outside zeros of g i j  cannot be contained as poles 

of k. ., as an unstable k.. would of course entail  an unstable c 

side zeros of g 

The out- 
JJ -1 JJ  1 j' 

cannot be made outside zeros of d . . , as this would mean 
i j  13 

pole-zero cancellation again. There is no reason, of course, why outside 
1 zeros  of k . .  cannot be made outside zeros of d The only way to prevent 

pole-zero cancellation between the outside zeros of g.. and d.. is to can- 

cell the outside zeros  of g:-! by zeros of 1::. 

- 1  1 
1J 1J 

JJ ij ' 

Thus the fourth restriction 
A J  JJ -1 

may be formulated. For all j any outside zeros  of g ;; as i = 1 . . . n 
A J  -1 

must be contained as the zeros  of 1 These outside zeros of G a r e  
jj' 

related to the outside poles of G. This is condition 4a. 

It is reasonable to assume that U is deterministically describable 

by a set of elements, n 
- 1  j u = Bj/ ( l  - z ) 

j 
-1 

where B. is a polynomial in z of finite length. From Equation (4) 
J 
c '  = l . .u . 

j JJ j 
For the disturbance effect to be zero as soon as possible i t  can be seen 

from Equation (26) that 1.. should be of the form: - 33 - 1 ii. 
1.. = (1 - z 
JJ ) J Pj 



1 2  

-1 where P. is a finite polynomial i n  z . This is condition 4b. Restrictions 

4a and 4b may be conveniently condensed into one se t  of s imilar  condi- 
J 

tions. F o r  all  j, 

l..(l) = 0 
JJ  
l!.(l) = 0 
JJ 

n -1 
l . .J  (1) = 0 
JJ 

- 1  1.. (first  outside zero of g ij as i = 1.. . n) = 0 
JJ 

-1 
JJ 1.l 

1.. (last  outside zero of g . .  as i = 1.. .n)  = 0 . 
This may be termed condition 4. If one o r  more of the outside zeros is 

th ra ised to the q 

l.., 1' 
JJ  JJ JJ 

will  illustrate this point. 

power then 1.. must be differentiated(q - l)times, and 

The example 
JJ . . .1.q-' at this zero equated to numeric zero. 

These constitute the restrictions for the non-interacting, minimal 

prototype response. 

Additional Restrictions for Ripple F r e e  Response - 
The requirements for r ipple  f ree  outputs is that the plant inputs 

be smooth, taking the form of a step function, a ramp, etc. 

to the plant are the hold outputs. To give the desired smooth outputs, the 

holds must conform to an elementary restriction and the hold inputs must 

be smooth themselves. 

The inputs 

Suppose h .  is the order  of the jjth hold in H, which is diagonal, 
J 

then 

h . + l > #  
J - - j  

2 where 0 .  is the order of the hold input e .. . This can be seen directly 

f rom the mechanics of the hold operation. Tnus, e .  rnist be of the form, J 2 J 

J 



13 

(30)  
2 -1) 9 j 

e = Qj/(l  - z 
j - 

where Q; is a polynomial in z ', of finite length so that a smooth hold 
J 

input is eventually reached. If f:; is the number of (1 - z-l)  factors in  
-1 J A  

31 
the numerator of g.., then from Equation (10) and the working in Appendix 

I, 

e!= ) ,gr1k..  33 11 ri * 
J 

i= 1 

it can be seen that the order  of the jth hold, h , -must comply with the 

following restriction: For all j, 
j 

h .  + 1 >, mi - f . .  
J J1 

a s i =  l... n 

th This is condition 5a. m. is the order of the i input, r.. 
1 1 

Since the input to the hold must itself be smooth to give a smooth 
-1 -1 
j l  11 

For  all j, k . .  must con- 

output, then from Equation (31  ), g.. k . .  must be a finite polynomial in z 

and s o  a further restriction on k . .  is necessary.  

tain as its zeros  all the poles of gij 
6a. 

11 -1 JJ 
fo r  i = 1. . . . n. This is condition 

The ripple-free disturbance function is treated in a s imilar  way. 

F r o m  Equation (23 ) 

2 '  and assuming e is of the form, 
j 

2 '  1 -1 $1 ej. = Qj /(1 - z ) j (34) 

1 

where Q is a finite polynomial by the same reasoning as before; Qj 

and Q. do not contain any (1 - z ) factors. Then again, I J  -1 
J 

h.  + 1 2 (35) J J 
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and this gives a further restriction on the hold order ,  for all j ,  

h .  + l > n  - f . .  as i = 1 n, J - J  ~1 
th  where n; is the order  of the i disturbance. This is condition 5b. 

Now kiidii is certainly finite itself, consider Equation (1 l), 

L = I - KD2, where the L matrix is compared of finite elements, so  that 
r ) l  

to obtain the required smooth hold input, e" ; for all j, k . .  must contain 

as i ts  zeros all the poles of g.. , for i = 1. . n. This is the same as 
-1 J JJ 

11 
the input response condition sa. 

Summarizing the additional restrictions 5a and 5b~~%Y2r.~a11'j: 

h.  + 1 > (mi and n.) - f . .  for i = 1. . n  ( 3 7 )  

-1 
1 J1 - J 

J1 

k.. must contain as its zeros all the poles of g i j  as i = 1. . .n, for 

This concludes the restriction theory for  the non-interacting case. 

where f .. is the number of ( 1  - z - l )  factors in the numerator of g ji , 
therefore condition 5. 

-1 
JJ 

all j and so, condition 6, restating 6 a  for convenience here. 

INTERACTING SYSTEMS 

Considering Equation (2), for an interacting system the K matrix 

is non-diagonal. 

diagonal matrix and GDIDZ must also be diagonal. Equation (91, 
To retain independent output restoration L is still a 

K = LGDl 

shows that GD1 must be a non-diagonal matrix, since K is non-diagonal 

and L is diagonal. Consider now Equation ( l l) ,  

L = I - KD2 

then KD2 is a diagonal matrix and it is also clear  f rom this that D2 must 

be a non-diagonal matrix. 

A s  before, this theory deduces the necessary restrictions on K 

and L and will  enable D and D to be designed for the fastest reduction 1 2 
of the distuwbance to zero, and the fastest  response time for  minimal 

prototype or ripple f ree  systems. The K matrix reached after the re- 
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strictions have been applied is the minimum11 K matrix. The elements 

of K may be made longer to suit the design problem, all that the res t r ic -  

tion theory requires is that the elements of K ,  and also those of L, con- 

tain certain specified factors. 

The restrictions for the minimal prototype response wi l l  be de- 

veloped first. For U = 0, Equation (13) states:  

E =  [I-.] R 

and according to the result  reached in Appendix I, 

e. = ( 1  - k . . )  r - f7 kjiri  
J JJ j 

i= 1 
iS j 

then by the same reasoning used to derive condition 1, for the e r r o r  e; 
J 

to sett le to zero, in general: For all j ,  (1 - k . . )  must contain the factor 

( 1  - z ) j, and k . .  must contain the factor (1 - z ) j for all j as 

i = 1 . .  n, i l  j. 

- 1  m JJ - 1  m '  

This restriction is equivalent to: 
13 

For all j, 

k . . ( l )  = 1 
JJ 

kl . . (  1) = 0 
JJ  

In - 1  

JJ 
k . .  j ( 1 )  = 0 

and for all j as i = 1..n, i # j ,  

k . . ( l )  = 0 

k l . . ( l )  = 0 
1J 

13 

m,- 1 
k . .  (I) = 0 
1J 



16 

- 
where k .  ., k . .  a r e  differentiated with respect to z This is condition 

JJ 1J 
7. 

From Equation (19) and the matrix manipulation in Appendix I, 

= >A: - ‘ k  ./l 
i j  g i P  PJ PP 

p= 1 

and from Equation (41), by reasoning exactly s imilar  to that used in de- 

riving condition 2, it may be stipulated that: To ensure dij is physically 

realizable, k . .  must contain the maximum transport  lag of l / g  
C = 1.. n, +E’ ai\ P,~.-~~his is cond\t.;~n, 8- 

condition 3, then to prevent d.. from containing as i t s  poles the outside 

poles of 

-1 as 
iP  

Again from Equation (41) and by the reasoning used to derive 
1 
1J 

p= 1 

-1 
then, for  a\\ Pd, 
$.= 1.. . n. 

This is condition 9. 

must contain as i ts  zeros the outside poles of g. as 

These outside poles are  the zeros  of the determinant o G .  
kpj “F 

Considering Equation (26), which applies in this interacting case 

as well as the non-interacting case, then by reasoning as in condition 4b, 

the following se t  of restrictions must be applied to the matrix L. For  all 

l . .(l) = 0 
35 

l!.(l) = 0 
JJ 

n -1 

JJ 
1.J (1) = 0 
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-1 where the elements a r e  differentiated with respect to z 

condition 10. 

This is 

Consider now condition 4a of the non-interacting case,  and at the 

same time consider Equation (4 11, There is no restriction on 1.. which 

is analogous to condition 4a. 

need not be made the outside zeros of 1 

in Equation (41) does not result  in the direct, and therefore harmful, 

appearance of the outside zeros of g-I  for all p. 

-1 33 

i P  
The outside zeros  of g as p = 1. . n  

as the summation performed 
PPI 

iP 

interacting minimal prototype system. 

These constitute the restrictions on the K and L matr ices  for the 

Additional Re strictions f o r  Ripple -Free Sys tems 

Consider Equation (10) , 
E2 = G-lKR 

From Appendix I, 

-1 (knlr l  + a * +  k r ) , 
a -  + gjn nn n 

(4.3) 

By reasoning developed for condition 6a, for smooth hold inputs then 

f r o m  Equation (43) the following condition is needed: Al l  the poles of 
-1 

is condition 11. 

. .  

€or i = 1,. . n must be contained as zeros  of k a s  p = 1.. .n. This 
gi j jp 

Considering Equation (12), 

E; = -G KD2U -1 

then i f  condition 11 has already been applied, the hold input E; is smooth 

itself. 
and remembering that KD is a matrix of finite elements. 

This is readily seen by comparison of Equations (10) and (12) 

2 
Equation (43) may be compared with Equation ( 3  l), and then if 

the same reasoning be applied for this interacting case as was applied 

to the non-interacting case of condition 5a, it wi l l  be evident that a more 

stringent restriction must be placed on the order  of the hold elements: 
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For  all i ,  

h i + l l  m - f i  (44) - 
where f! is the least number of (1 - z ') factors in the numerator of 

g-1for all j ,  and where m is the maximum order  of all  the inputs. This 

is condition 12a. 

1 

1J 

2 '  In an exactly analogous manner, for e , a similar  restriction 
j 

is also required: For  allfi, 

h i + l k n - f !  (45) 
J 

where n is the maximum order of the disturbance elements, u .  for all  
J 

j. This is condition 12b. 

Conditions 12a and 12b can be conveniently summarized into 

one composite restriction: For  all i, 

hi + 1 k ( m , n  - f!) . 
J 

This is condition 12. 

This concludes the theory of the interacting system r e s t r -  

ictions. 



DESIGN PROCEDURES 

In the preceding theory restrictions have been developed that 

a r e  to be applied to the hold elements and t a  the K and L matrix elements. 

The design procedure for the non-'interacting case is simpler than that 

used in the interacti-ng case. 

en later.  

Examples of each design method are giv- 

Both methods of design rely upon Equations (11) and (19), 

L 7 I - KD2 

-1 -1 D 1 = G  L K 

NON-INTERAC TING CASE 

Consider Equation (33) ,  

n 
2 k.. diiui : e2' J =>-:gii 11 

i = l  
2 from this equation it can be seen that i f  d.. contained, in i ts  denominator, 

any outside poles then e 
cannot contain those outside zeros of kii which were  taken from g.. , a s  

e would again be unstable. 

2 In particular, dii 
11 2 '  would become unstable. 

j -1 
2 '  J 1  

j 
Briefly the design procedure is as follows. The hold checks, 

condition 5, a r e  f i rs t  applied if  ripple-free design is required; con- 

ditions 1, 2 and 3, and condition 6 for ripple-free design, a r e  used to 

obtain the K matrix; using Equation (ll), the restrictions on 1 

lied and L and D2 are found simultaneously; Equation (19) gives the el- 

ements of D 

a r e  app- 
jj 

l' 
These steps a r e  now elaborated: For a ripple-free design, the 

f i r s t  step is to apply condition 5 to the hold elements and to the elements 

of the inverse of the G 

h.  -I- 1)  (mi, ni) - f . .  . 
J 1  - 1 

The elements 

j, k.. must contain the 
JJ - .  . 

matrix. For all j, as i = 1.. .n, 

of the K m-atrix are 

maximum transport 

19 

obtained a s  follows: For all 

lag of l/giJi a s  i = 1.. .n,  f rom 
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condition 2. For all j, k . .  must contain as its zeros  the outside pole6 of 
JJ -1 
g. , or  all  the poles of for  a ripple-free design, as i i 1. . . n. These -1 

gij 1j 
a r e  the same a s  the outside zeros,  o r  al l  the zeros when ripple-free, of 

the determinant of G. Conditions 3 and 6 were used here. The k.. obt- 
JJ 

ained so  far  is then multiplied byh. 

J z  J ,  ( a j  + a. z - l +  ..... + a  0 1 
J j 

and condition 1 is applied: Equation (17), for  all j, 

k..(l) = 1 
JJ 
I 

k.(l)  = 0 . JJ  

m.-1 

JJ 
k . . J  (1) = 0. 

(47) 

2 -1 The numerator of d. .  is a polynomial in z whose length is det- 
J J  -1 ermined by n .  and the outside zeros of gij , thus; 

J 
n.-1 -(n.-1) n .+O. -1 -(n .+O. -1) 

+ ... + b J J z  )(48) 
j 

( b o + b f z - l +  ... + b  z 
J J  j 

The coefficients of this polynomial will  be found la ter ,  0, is the number 
-1 5 2  

of outside zeros  of g . .  a s  i = 1. . . n. The denominator of d. .  is made to 
11 JJ 

be all of k 

Equation (ll), 

except for the outside zeros of k Appendix I gives f rom 
jj’ j j  

r) 
L 1.. = 1 - k.. d. .  

J J  JJ  JJ  
(49) 

where k:, dr. -- has now been treated s o  that i t  is the product of the outside 
JJ JJ 

zeros of k . .  and the undetermined numerator of d2 . If the conditions on 
33 j j  3 

l . . ,  condition 4, a r e  now applied to Equation (49), then 1.. and dr. can be 
JJ JJ JJ  

found simdtaneously. Condition 4 states,  in the form of Equation (28)’ 

for all j, 
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l. .(l) = 0 
JJ 

l! .( l)  = 0 
JJ 

n -1 

JJ 
1 . j  (1) = 0 

-1 1.. ( lSt outside zero of g. as i = 1. . . n) = 0 
?J l j  

-1 1.. ( Oth outside zero of g as  i = 1.. . n )  =O . JJ j i j  
1 

Since both k..'and l.., for al l  j, have now been found, d. may 
33 JJ l j  

be directly obtained by substituting in Equation (20), 
1 -1 dij = g.. k . . / l . .  . 

1J JJ JJ 
An example of this non-interacting design method is given 

la ter  to illustrate the procedure. 

INTERACTING CASE 

If ripple-free design is specified condition 12 must be sat- 

isfied, so  that from Equation (46), 
hi + 1 5  (m,n - f i ) .  
The elements of the non-diagonal K matrix are obtained in 

a way similar to the diagonal K matrix. The following s teps  a r e  re- - quired. Forall p i ,  k . must contain as i ts  zeros  the maximum transport 
-1 e 

, of l /gfp as & = 1. . . n, f rom condition 8. F r o m  condition 9, addition- 

ally condition 11 for a ripple-free system, k 

poles o r  all the poles for ripple-free outputs of g. . as zc= 1. . . n. 

These poles correspond to the zeros  of the determinant of G. The 

elements of K , so  fa r  incomplete, are then to be multiplied by the fact- 

* .  
I .  must contain the outside 

pj  -1 
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and condition, 7, in the form of Equations (39)  and (40), is applied: 

F o r  all j ,  

k . . ( l )  = I 

k!.(l) = 0 
JJ 
JJ 

m -1 

JJ 
k . .  j (1) = 0 

and for all j, a s  i = 1.. .n,  i f  j, 

k . . ( l )  ='O 
k ! . ( l )  = 0 
1J 

1J 

m -1  
ki j j  (1) = 0 

So far the design h s followed a method analogous "3 the non- 

interacting design, but a t  this stage the two design procedures must 

differ since K is no longer diagonal. Consider Equation (1 1) and in 

particular the matrix KD2 which has been shown to be diagonal. The 

need to ensure that KD2 is in fact diagonal is the ibdsis of the remain- 

ing design procedure. 

the elements of KD must correspond to a diagonal matrix, this t reat-  

ment may be expressed as follows: For  i, j = 1. . n, 

Equation (1 1) is treated in Appendix I, and since 

2 

p =  1 
and for j = 1. . .n ,  

k .  d2 = 1 - 1.. 
JP pj JJ 
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2 From Equation (1  1) then, n equations have been obtained. 

may be broken down into n sets  of s imilar  equations with (n - 1) equ- 

ations pe r  set ,  those of Equation (51), and n equations obtained from 

Equation (52) .  From Equation (51), a s  i = 1.. .n,  i .f j, 

These 

p = 2  

and let j = 1.. . n  to obtain the jth set of the (n  - 1) equations. 

ing dl  for j = 1.. . . n  as a constarit, then from Equation (53) ,  there 

a r e  (n - 1) equations with d as p = 2 .  . . n to be considered as un' . 

knowns. These 

(n - 1) equations can be readily solved, for example by Cramer '  s Rule, 

in te rms  of d2 as p = 2. .  . n for all j .  Thus for j , i=  1.. . n, 

Treat-  
2 

j 2 
pj 

The elements of K are to be considered as constants. 

2 for d 
1j pj' 

2 d. .  = 8 . . ( k  elements, d ) 
1J 1J 1j 

(54)  

where 8.. is found by solving the (n - 1) equations above. Equation 

(54)  for all i, j is then substituted. back into Equation (52) giving: 
1J  

' 1.. JJ = 1 - p , k .  JP 8 p j  (55 )  
p =  1 

n 

p =  1 
2 where T = 8 , / d  . s o  that k. 7 

all the elements of the matrix K, which of course have.aJreddy been 

determined. 

completed. For  all j, 

for all j and p is only a function of 
pj PJ 13 JP P j  

The last stages of the interacting design may now be 

B.  = \ k .  T 
' J  / L a  JP PJ 

(57)  
p = 1  
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can be expanded and factorized. The denominator of p .  in its entirety 

is to  be made the numerator of d so  that for all  j, 1.. is a polynomial 

of finite length. in its factored form, in general 

wi l l  contain inside zeros.  

2 J 

1j 53 
The numerator of P 

j' 
These inside zeros  a r e  to  be contained a s  

2 inside poles of d 

iplied by, 

as j = 1.. . n. The d2 obtained so far is then mult- 
1j 1j 

j z  -' -(Y) ) (58) 
0 1 -1 (cy.+CY.z +.....+cy. 
J J J 

for all j. Then, 

1.. = (cy. 0 + cy.2 1 - 1 +  .... + cy j z  -' -(Y) ' P i  (59) 
JJ J J  j 

where P !  represents the remaining te rms  of 6. after a s  much as poss- 

The conditions on l.., condition 10 in the ible has been taken into dlj. 
JJ 

fo rm of Equation (42), are now applied to determine the values of the 
0 1  n -1  2 

coefficients cy., CY. . . . CY j for all j. Thus 1.. and d can be deter-  
J J  JJ 1j 

mined simultaneously for all  j. The f i r s t  row of the D2 matrix has now 

been obtained, d The remaining rows a r e  found from Equa- 

tion (54), for j = 1.. . n, i = 2 . .  .n, 

J J 2 

2 for all  j. 
1j 

a l  

The elements of the D1 matrix can be found from Equation 

(41), +% 
d..  = ) , (g. ;p' k p1 .)/Ipp 1J 

p =  1 

A short  example to illustrate the interacting design method 

wil l  clarify this ra ther  abstract treatment. 

This concludes the design theory of the interacting system. 



EXAMPLES 

Two examples a r e  given. The f i rs t  example gives a complete de- 

sign for the non-interacting case, for  both minimal prototype and ripple 

free systems. The second example merely i l lustrates a particular point 

of the interacting system design, but, except for the more involved work 

required for the interacting system, the two systems a r e  basically very 

similar.  

EXAMPLE 1 

Suppose the plant-hold matrix, G, for zero order  holds is given 

below: 

-1 -1 52 32 

(1 - 1.052-l) (1 - 0 . 1 2 3  

-1 
= II 32 

-1 22 

(1 - 1.052-l) -1 11 (1 - 0.12, ) 

then f rom Appendix 11; 

z - ~  (1 + 17.452-l) (1 - 0.5552-l) 

(1 - 1 . 0 5 ~ - ' ) ~  (1  - 0. 1z-1)2 
Id= 

and thus G - l  
ri 
L 

-1 -1 2 (1 - 1.052 ) (1 - 0.12 ) 
-1 -1 

z (1 + 17.452 ) (1 - 0.5552-l) 

2 - 3  (1 - 1.052 -1 ) (1  - 0.02-l) 

Z, -1 ( 1 +  17.452 -1 ) ( 1  - 0.5552 - 1. , 

-1 2 
-3  (1 - 1.052-l) (1 - 0. l z  
-1 -1 z (1 + 17.452 ) (1 - 0.5552-l) 

) 
- 2  

5 (1 - 1.052-') (1 - 0. l z - I )  - - 
z '( 1 + 17.452 ') (1 - 0.5552-l) 

For  a minimal prototype system, assume the input and disturbance 

functions a r e  of the form: 

25 
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I -1 
Z 

2 
(1  - z - l )  

1 
-1 

( 1 - z  ) 

For the non-interacting design, K has been shown to be diagonal. 

Ripple f ree  design is not specified so there is no need to apply the hold 

checks , cpndition 5. 

The K matrix is now found from conditions 1 , 2 and 3. Then k .  ., 
JJ  

as a factor, so  also must k22. For  all  

for a l l  j, must contain the max. transport lag of l /g. .  as i = 1 n. 

Therefore k l l  must contain z 

j, k. .  must contain as its zeros the outside zeros of the determinant of G .  
JJ 

Therefore k l l  and k22 must contain as a factor the t e rm (1 + 17.452 

Since m 

multiplied by ( a i  + a2 z 

-1 1J 

-1 
). 

0 
= 1, k l l  is now multiplied by a l  ; and since m = 2, kZ2 is 2 1 -1 

-1 -1 0 k l l  = z (1 + 17.452 )a.1 

1 
1. Thus, 

-1 -1 0 1 -1 k22 = z ( I +  17.452 ) ( a 2  + a 2 z  ) 

and condition 1, 

k i 2  (1) = 0 

is applied. 
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From Appendix 11, these conditions give as the completed K 

matrix, 

= 0.0542 -1 (1 + 17.452-l) 
kl 1 

= 0.1592 -1 (1 + 17.452-l) (1 - 0 . 6 6 ~ - l )  . 
k22 

The numerator of d 2 for all j, is a polynomial in z -1 whose 
j j J  

length is determined by n. and the outside zeros  of g f i .  Since n l  = 2 

and O1 is 2 (the number of outside zeros  of gil as i = 1,2). In this case 
the outside zero at z = 1.05 is repeated twice, and so O1 = 2, then the 

numerator of d 

and 0 is 2, exactly as before, then the numerator of d22 needs 3 co- 
2 efficients. The denominator of d . .  is to be all of k.., except for the out- 
35 33 

side zeros of k... Therefore according to Equation (49): 

-1 J 

2 
11 must contain 4 coefficients. Similarly, since n2 = 1, 

2 
2 

JJ 
= 1 - z -1 (1 + 17.452 -1 ) (b:+ b: z - l  + b; z - ~  + b; z - ~ )  

5 1  

1 -1 3 -3 and 

) 
bo + bl  z + b: z - ~  f bl  z 

( 1  
dyl = 0.054 

-1 1 - 1  2 2  = 1 - z (1 + 17.452-l) (bi + b2 z + b2 z ) l 2 2  

If the conditions on l.., (4),for j = 1, 2 are now applied to the above 
JJ 

equations for 111 and 122, 
4 

111(1) = 0 

1;+1) = 0 

l l1(l .05) = 0 

1;' (1.05) = 0 
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and 

122(1) = 0 

122(1. 05) = 0 

1b2(1.05) = 0 , 

then as shown in Appendix I1 the coefficients can be evaluated: 

0 b l  = 0.54 

1 

2 

b l  = - 1. 12 

b l  = 0.674 

3 bl = 0 . 2 2  

0 b2 = 0.33 

1 b2 = -0.39 

2 b2 = 0.175 . 

-1 2 2 Thus 

= (1 - z -1 ) (1 - 1 . 0 5 ~ - l )  5 1  (1 + 3.562 ) 

-1 2 
= (1 - z - l )  (1 - 1.052-l) (1 + 2.772 ) l 2 2  

and 
-1 -1 + 1 2 . 5 ~ - ~  - 4. l z  = 10 - 20.82 dl  1 

- 
= (2.08 - 2.452-1 + 1. l z  2, / (1 - 0 . 6 6 ~ - l )  , d2 2 

for i, j = 1, 2 are now obtained directly f rom Equation ( 2 0 )  
1 

di j 
2 

0. 108 (1 - 0 . 0 ~ - l )  

-0.4777 (1 - 0 . 0 ~  -1 ) (1 - 0.662-l) 
- - 1 

D - d12 (1 - 0.5552 -1 ) (1 - z -1 ) (1 + 2.7772 ') 
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1 -  -0.162 (1 - 0 . 1 ~ - l )  - -1 -1 
) (1 - z (1 - 0.5552 ') (1 + 3.562 d21 - 

2 -1 1 - 0.795 (1 - 0.02 ) (1 - 0.662-l) 
-1 -1 - 

(1 - 0.5552 ) (1 - z ) (1 - 1.052-l) (1 + 2.772 ') d22 - 

This completes the Einima? protctype cmt ro l l e r  design. 

F o r  Ripple Free Design 

The hold conditions must be applied as a first s tep in the ripple 

free design: 

o rde r  holds, h l  and h2 are both zero, and for  the particular G 

given in the example, f . .  (for all i, j)  is also zero. Thus the hold con- 

ditions are not satisfied as the problem stands at the moment, as 
m = 2, n = 2. To avoid inserting more integrations in the plant or 
increasing the hold orders ,  which would make this example unnecessarily 

long, it is proposed that only s t e p  inputs and disturbances are used. 

F o r  all j, h. + 1 > (m.,n.) -f . . ,  for  i = 1.. . n. - 1 1 J1 
With zero  

J -1 matrix 

J1 

2 1 

Then, 

1 

(1 - z - l )  

1 
-1 

( 1 - z  ) 

The only difference now between the minimal prototype design and the 

ripple free design is the inclusion of an extra  restriction (condition 6)  

on k.  .. Not only must k.. contain the outside poles of gij as i = 1. . . n, 

it must also contain the inside zeros. 

then 

-1 
JJ  JJ  

The following K elements are 

-1 -1 -1 0 k l l  = z (1 + 17.452 ) (1 - 0.5552 ) a l  , since m = 1 1 
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and applying the conditions (1) on k . .  (j = 1,2): 
J J  

-1 -1 -1 = 0.12222 (1 + 17.452 ) (1 - 0.5552 ) , 
kl l  = k22 

111 and 122 are evidently the same as 122 in the above minimal prototype 

case: rl 

2 2 but d l l  and d22 are, of course, different from the minimal prototype. 
2 (2. 7 - 3. 22-1 + 1.442 ) 

(1 - 0.5552-l) 
dyl = 

2 -  (4.4 - 9. 22-1 + 5. 5z-2 - 1. 8z-3) 
d 2 2  - (1 - 0.5552 -1 ) 

The elements of D1 are found as before: 
n 
L - 

(1 - 0. lz ') 1: 0.244 - - 
4 1  - (1 - z ') (1 - 1 . 0 5 ~ - l )  (1 + 2.772-l) 

-1 1 0.366 (1 - 0 . 0 ~  ) d21 = - 
(1 - z - l )  (1 + 2.772- l )  

2 
0.61 (1 - 0 . 1 ~ - l )  
-1 -1 

d22 - (1 - z ) (1 - 1.052-l) (1 + 2.772 ) 

- 1 

The outputs, C and C 1  can be directly calculated from Equations 

(1) and (3). 

For the minimal prototype system: 

c1 = 0. 0542-1 + z - ~  + z - ~  + . . . 
c = 0.1592 + 32 + 42 + ... r amp  

-1 -2  - 3  -4 
C i  = z + 1.462 - 6.42 + 3.92 .. r amp  disturbance 

c i  = 1 + 0.672 - 4. 72 + 3.042 . . s tep  disturbance. 

s tep 

-2  -3 -4 
2 

-1 -1 -3 
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For  the ripple free system: 

c1 = 0.1222 + 2.1802 t z + .. . -1 -2 -3 

- 2  t 2-3 + ... -1 = 0.1222 + 2.1822 c2 

“i  -1 -2  -3 = l + O . 6 7 ~  - 4.72 + 3.042 ... 
- 1  -3 c i  = 1 + 0.672 A - 4.72-’ + 3.042 . . . 

step 

step 

step 

step 

To aid the interpretation of these outputs, they a r e  plotted graphically; 

Figures  2, 3, 4 and 5. It can be seen from Fig. 3 , the minimal proto- 

type disturbances, that the output has an initially large fluctuation. If 

this is considered undesirable, then extra constants may be included in 

the appropriate element of L, and then adjusted to minimize the magni- 

tude of the fluctuations at the output. 

course entail a longer settling time, but this may not be too important. 

These extra constants will of 

EXAMPLE 2 

To help clarify the interacting design method, an  abreviated ex- 

Assume for a 2 by 2 system, the K matrix has already ample is given. 

been designed, then, with D and L to be determined, the diagonal matrix, 2 

so  that, from Equations (51) and (521, 

I l l  = 1.-  (klld;l + k12dil) 

2 
O = k l l d 1 2  + k12di2 

2 2 0 = k d , ,  + k dZ1 2 1  I I  22 

= 1 - (k d 2 + k22d22) 2 . l 2  2 2 1  12  
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Figure 2. Outputs c and c2 for a minimal prototype system 
1 
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k 3  

a i 
E 

C 

-I 

-2 

-3 

-4 

-5 

-6 

I 

I 
Figure 3.  Octputs c '  and c; for a minimal prototype system 

1 
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1 

Figure 4. Outputs c1 and c for a ripple-free system 2 



35 

3 

C 

-1 

-2 

-3 

-4 

Figure 5. Outputs c i  and ci €or a ripple-free system 

a 
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2 
2 1  Then Equations (61) and (62)give d 

acting design method. Then 

and d i2$  as explained in the inter- 

I 

2 k2 1 4  1 
d21 = - 

k22 
2 

2 klld12 d22 = - 
k12 

and substituting these back into Equations (60) and (631, then the follow- 

ing relations a r e  obtained, 
n 

I 

1 )  2 5 1 4 2  
122 = 1 - (kzld12 + k22 ( - 

k12 

which lead directly to 
2 

d, 
1 1  

(kllk22 - k12k21) 111 = 1 - - 
k2 2 

2 
dl 2 

(k21k12 - k 2 2 k l l ) *  122 - 1 - - 
k12 

- 

Continuing the design procedure, then k22 and k12 a r e  made the numera- 

tor  of d l l  and d12 respectively. Next (k l lk22  - k12k21) and (k21k12 - 
k k 
zable and s t a b l e w t o  be contained in the denominator of their respective 

D2 element6, 

posed of the polynomial in z 

by applying the 1.. restrictionsEquations (59)  and (42). Finally, having 

found the f i rs t  row of the D matrix, the remaining elements may be 

found from: 

2 2 

) a r e  expanded and factorized and as much as is physically reali- 22 1 1  

2 2 The remainder of the numerator of d l l  and d12 is com- 
-1 , whose coefficients are to be determined 

JJ 
2 



d 2 =- - kl ld12  

.k12 22  

.2 k2 ldl 1 

The remainder of the interacting system design needs no further 

clarification. 



CONCLUSIONS 

This paper has presented the theory and procedure used to design 

The digital controllers for multivariable sampled-data control systems. 

theory of the design method is based extensively on a paper by Hung . 
Simple examples to demonstrate the design procedure practically have 

been given. 

5 

The essence of the metnod is to incorporate fundamer.tally in the 

K and L matrices, the basic design criteria of multrvariable sampled- 

data control systems: Interaction and non-interaction, minimal proto- 

type and ripple f ree  outputs. 

By using the overall transmission matrices K and L a s  a basis, 

the procedure developed ensures awareness of the actual multivariable 

concept. This may be compared favorably with Sobral 's  method of 

designing controllers for multivariable systems by breaking down the 

system into individual single variable systems. 

7 

A further advantage demonstrated is that unstable poles of the 

plant do not place restrictions on the K matrix; this gives a faster 

response than that available with the controller configuration of Sobral 

(with both controllers in the forward loop). 

Because the design procedure is based only upon stability restric- 
tions on K and L and the necessary physical realizability of the controllers, 

the design method becomes almost mechanical and is very simple to use. 

The design system readily allows the treatment of systems with 

more outputs than there a r e  inputs. 

in this case corresponds to the number of outputs, and the missing input 

or disturbance elements are merely designated by zero  elements in their  

matrix. 

tious outputs may be established. 

The dimension of the matrices used 

Similarly if there a r e  more inputs than outputs, then the ficti- 

38 
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APPENDICES 



APPENDIX I; 

Dl = G L 

ELEMENT EQUATIONS FROM MATRIX EQUATIONS 
-1 -1 K where K is a diagonal matrix. 

1 1 
d:l d12 d13 

1 -  1 1 
d21 d22 d23 

1 1 
d31 d32 d i 3  

c - 

i 

in  general, 

k /1 k /1 

k /1 k /1 

k /1 k /1 

-1  -1 
k /1 

-1 
gll’  11 11 g12 2 2  22 g13 33 33 

-1  -1 -’ k /1 

-1 

‘21 11 11 g22 2 2  2 2  g23 33 33 

-1 -1  
k /1 g31 11 11 g32 22  22 g33 33 33 

1 -1 dij = g. .  k. . / l  
1J JJ j j  

42 
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= 

E2 = DILR 

d: 1 

4 1 

1 
d21  

- - 1 
d2 1 

1 
d3 1 

1 
d12 

d2 2 
1 

1 
d3 2 

1 
d12 

d2 2 
1 

1 
d32 

= 

1 
d13 

1 
d2 3 

4 3  

1 
( d l l  '11 '1 + d;2 '22 '2 + d;3 '33 '3) 

1 1 1 
(d21 '11 r l  + d22 '22 r2  + d23 '33 '3) 

1 1 
(d t l  '11 '1 + d32 '22 '2 + d33 '33 '3) 

l11 

0 

0 

0 

'2 2 

0 

0 

0 

1 

l33 

'11'1 

122r2 

'33'3 

1 I 

in general, 

e -  j - y , d !  JP 1 PP rP 
p r  1 



-1 E2 = G KR where K is diagonal. 

2 -1 -1 -1 

2 -1 -1 -1 
2 

2 -1 -1 -1 
e 

e l  g l l  g12 g13 

g21 g22 g23 

g31 g32 g33 

e =  

3 ,  I 

0 0  
kl 1 

O k22 

O O k33 

0 

- - 

1 r 

r2 

3 r 

-1 -1 -1 
g l l  g12 g13 k l l r l  

-1 -1 -1 
g21 g22 '23 , k22r2 

-1 -1 k r  -1 
g31 '32 g33 33 3 

in general: + 
g.. k . r 
ji ii i e 

i =  1 



I 
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O O -1  -1  - 1  
g l l  g12 g13 k l l  

-1 -1  0 - &: g22 g23 k22 

g3! g32 g33 O O k33 
-1 -1  -1 

'KD U where K and D2 are diagonal, 2 E 2 '  = -G- 

d;l O O u1 

0 d i 2  0 u2 

3 0 0 d i 3  U 

- - -  

-1 -1  -1 
g l l  g12 g13 

- 1  -1  -1  
g21 g22 g23 k22 4 2  u2 

-1  -1  -1  
g31 g32 g33 

(gii k l l  d;l u1 + g;i k22 d i 2  u2 + g13 -' k33 d2 33 u 3, ] 

k - _ -  

in  general, 
n 

2 g.. k. .  d . .  u 
ji 11 11 i e 

i =  1 



E = I - K R where K is non-diagonal. 0 
1 0 0  1 e 

e =  2 0 1 0 - 

0 0 1  3 e 

k l l  k12 k13 

k21 k22 k2 3 x 

I I 

(1 - k l  

-k21  + 

L - 
-k r 31 1 

kg 1 kg 2 k33 

- k  r 13 3 

k2 3r 3 

- k33)r3 

d - 

in  general: 

e = (1 - k . . ) r  -p:.. ji r i' 
j JJ J 

i =  1 
i / j, 

If K is diagonal then kij for  i # j is zero, therefore for K 

diagonal, 

1 -k r 

(1 - k z 2 )  -k23 r 

(1 - k l l )  -k 12 13 

2 -k21  

-kg 1 -kg 2 ( 1  - k33) r 3  

e = (1 - k . . ) r  
j JJ  j 
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-1 -1 -1 
d:l d:2 d:3 g l l  g12 g13 

-1 -1 -1 
d21  d22 d23:  = g21 g22 g23 

-1 -1 -1 
lL31 g32 g33 

1 1 1  

1 1 1  
‘31 d32 ‘331 

-1 -1 D1 = G L K where K is non-diagonal. 

0 0  l/l11 

0 ll/12s’ 0 

0 0 1p33 

-1 -1 -1 
gll g12 g13 

- -1 
- 8 2 1  g;; %-; 

-1 -1 -1 
g31 g32 g33 

kl 1 !Ill 

k211122 

kg 1 / l3  3 

k l l  k12 k13 

k 2 1  k22 k23 

k31 k32 k33 

k12/11 1 k13/111 

k22/12 2 k23 112 2 

kg 2 I1 3 3 kg 3 / l3  3 

i n  general: 

1 
1J giP PJ PP 

d.. = ) , -‘k ./l 

p =  1 
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-1 
g13 

g2 3 
-1 

-1 
83 3 

wrier-e A is nun-uiagonai. 

kl 1 

k2 1 

kg 1 

2 
e l  

e 2  = 
2 

2 
e3 

-1 
81 1 

8 2  1 
-1 

-1 
g3 1 

-1 
81 2 

82  2 
-1 

-1 
g3 2 

-1 
81 2 

822 
-1 

-1 
g3 2 

k13 

k2 3 

kg 3 

1 r 

2 r 

3 r 

k12 

k2 2 

kg 2 

- - 

-1 
81 1 

8 2  1 
-1 

-1 
g3 1 

-1 
g13 

‘2 3 
-1 

-1 
83 3 

i n  general: 

k r + k r + k13r3 

k r + k r + k23r3 

k r + k r f k33r3 

11 1 12 2 

2 1  1 22 2 

31 1 3 2  2 



L = I - KD2 where both K and D2 a r e  diagonal. 

0 0  1 0 0  l11 

O l 22  o =  0 1 0 -  

0 0 1  I I33 

0 0  kl 1 

O k22 

O O k33 

0 

= 

0 0  dl 1 

0 d i 2  0 

1 0 0  

0 1 0 -  

0 0 1  

k l l d S l  O O 

O k22d22 20 
2 

O O k33d33 

= o  

0 0 2 
- klldll  

0 2 
- k22d22 

2 
- k33d33 0 0 

in general: 

2 1.. 7 1 - k . .  d 
JJ J J  jj 
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L = I - KD2 where both K and D2 are non-diagonal. 

k d2+k d2 +k d2 ) (k d2 +k d2 +k d2 ( k  d2 +k d2 +k d2 11 11 12 21 13 31 11 12 12 22 13 32) 11 13 12 23 13 33 

KD2 

and the individual elements of I - KD are then: 2 

element, 11 = 

in general 

12  = 

13 

2 1  

22  

23 

31 

32 

33 

2 2 2 
-( klld12 + k12d22 + k13d3,j = 0' 

= o  2 
-(k11d13 + k12di3 + k13di3) 

2 2 
-(k21d121 + k22d21 + k23!31) 

2 
-(k21d;3 k22d23 

2 2 
-(k31dl 1 ' k32d2 1 

2 
-(k31di2t k32d22 

= o  

+ k23d233) = o  

k33di 1) = o  

k33di2) = o  

the diagonal elements of I - KD2 are given by: 
n 

1,. = (element). . = 1 ->,1 klP aij 
JJ JJ P T  
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and for the off-diagonal elements: 

0 = (element).. = - ?>. d 2 
1J IP pj. 

i f j  p =  1 



APPENDIX 11'. CALCULATtTONS FOR EXAMPLE I 

IGI = 10z-2 - 9z - 2 .  
-1 2 (1  - 1.052 ) 

-2  -1 2 = 1Oz (1  - 0. 1z-1)2 - 9 ~ - ~ ( 1  -1.052 1 

-1 2 -1 2 (1 - 1.952 ) (1 - 0 . l z  ) 

-2 -1 -2 -2  -1 -2  = 1 0 ~  (1 - 0.22 + 0 . 0 1 ~  ) - 9~ (1 - 2 . 1 ~  + 1.1032 ) 

-1 2 -1 2 (1 - 1.052 ) (1 - 0 . 1 ~  ) 

- -1 -2 -1 = z 2(10 - 22  + 0. l z  -9 + 18.92 - 9 . 9 2 2 5 ~ - ~ )  

-1 2 -1 2 (1 - 1.052 ) (1  - 0 . 1 ~  ) 

-1 -2  = ~ - ~ ( 1  + 16.92 - 9.822 ) 

-1 2 -1 2 (1 - 1.052 ) (1 - 0 . 1 ~  ) 
- 

= z 2(1 + 17.45z-l)(1 - 0.5552-l) 
-1 2 -1 2 (1 - 1.052 ) (1 - 0. lz ) 

The elements of K are now treated; from the example, 
= z - '(1 + 17.452 -1 )al  0 

k l l  
and k (1) = 1, s o  that, 

-1 0 
)alJ 

11 
1 = (1 + 17.452 

a o  = 1/18.45 = 0.054 . 
there fore, 

1 
Also, 

-1 -1 0 1 -1 k22 = z (1  + 17.452 )(a2 + a 2 z  ) 

and, 

52 
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Expanding k, , : 
1 -2 = z -1 (a 0 + a'z-l + 17.45a e z -1 + 17.43a2z ) 

= a2z + z (a2 + 17.45a2) + 17.45a2z . 
- L L  

0 - P  -22 1 % 1 -3 k2 2 

ki 2 2 
= a 0 + 2 2  -1  (a 1 + 17.45ai) + 3(17.45a2z 1 -2  ) 

1 k' (1) = ao + 2a + 34.9ai + 52.35a2 
2 1 

22 2 -  2 i u 1 
= 35. 9a2 + 54. 35a2 

Now applying the conditions, 
0 1  1 = 18.45(an + a,) 

' 1  o = 35. 9a0 + 54. 35a2 
4 

2 
rearranging, 

0 1 0 = 35.9a, + 54.35a, 
4 ' 

0 1.95 = 35.9a + 35.9a2 
2 

and subtracting, 
1 -1.95 = 18.45a2 

a = -1.05 

ao = 0. 159. 

therefor e, 
1 
2 

2 
Therefore, 

-1 -1 -1 kZ2 = 0.1592 (1 + 17.452 )( 1 - 0 . 6 6 ~  ). 

Now 111 and 122 are calculated: Since the factors which 

must be contained in these elements a r e  known, the determination of 

the If bff coefficients may be much simplified by equating coefficients 

of l i ke  powers of z 

Given, 

l I1 = 1 - 

and the conditions; 
(AI) 

-1  -1  0 1 3 -3 z (1 + 17.452 )(bl + b 1 z-1+b:z-2+b1z ) 

111(1) = 0 

l i p )  = 0 

1ifi1.05) = 0 

ill( 1. 05) = 0, 
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0 1 2  3 
1' it is required to find the coefficients b 

that 111 must be, 

where -y is to be determined. 

bl, b l  and bl.  This means 

-1 2 -1  2 -1  = (1  - z ) (1 - 1.052 ) (1 - ')z ) l11 

Expanding Equations ( A l )  and (A2); - 

= 1 - boz'-l - ~-~(b~+17.45b; ) -z  -3 (bl+17. 2 45bl)-z 1 -4 (b1+17. 3 45bl)- 2 

= 1 - z -1 (4.1-7) -z -2  (4.17'6.3) -z  - 3  (4.3-6.37) -~ -~ (4 .37 -1 .1 )+ l . l yz .  -5 

1 -51 3 l11 
- Z  17.45bi , 

1 

Comparing coefficients of like powers of z 
-1 11 

: 
0 4 .1  - y = b l  

4.17 - 6.3 = b + 17.45b0 1 

4.3 - 6 . 3 ~  = b 

4.37 - 1.1 = bl  + 17.45b1 

1. l y  

!2 4 
a 4 + 17.45b 

= -17,45b1. 3 

These are very  easily solved, and give, 

y = 3.56. 

Substituting this value for y the coefficients can be found; 

bo = 0.54 
i b =-1. 12 1 

b: = 0.674 

3 bl = -0 .22 ,  

and 111 is; 
= (1 - z - ~ ) ~ (  1 - 1.052 -1 ) 2 (1  + 3.562-l) 

$1 

l22  

122(1) = 0 

Again given, 
-1 -1 0 0 -1 2 -2  

= 1 -Z (1 + 17.452 )(b2 + b2Z + b2Z ) 

and the conditions; 

122( 1.05) = 0 

l h 2  (1.05) = 0, 

a s imilar  procedure may be repeated for 122. 



122.is also given by, 
-1 -1 2 -1 

= (1 - z )(1 - 1 . 0 5 ~  ) (1 + P Z  l 2  2 
where p is to be determined. 

Expanding Equations (143) and (A4),  

1 11 = 1 -z  b2 - z - 2 ( b i +  17 .45b i )  -z (b2 + 17.45b2)  - z -1 0 -3  2 1 -4 2 

-1 -2  -3  -4  

17.45b2 

= 1 -Z ( 3 . 1  - P) -Z ( 3 . 1 ~ - 3 . 2 )  - Z  ( 1 . 1 - 3 . 2 ~ )  -Z 1 . 1 ~ .  
-1. 41 

After equating coefficients of z these give; 
2 b2 = 0 . 0 6 3 ~  

1 b2 = 0.063 - 0 . 1 8 7 ~  

b2 = 0. 187p - 0. 187 

b ~ 3 . 1 - p .  

0 

0 
2 

From which, 

p = 2.77, 

and 
0 b2 = 0 .33  

b 2 =  -0 .39  1 

2 b2 = 0.1745 . 
Then, 

-1 2 -1 
= (1 - z - l )  (1 - 1.052 ) ( l .+  2.772 ) 

l 2  2 



APPENDIX I11 . DERIVATION OF BASIC EQUATIONS 

0 is the zero  matrix, I the identity matrix. Referring to 
Fig. 1: with U = 0, 

C = GDIEl 

E l  = R - D2C 

therefore 

C = GDl[R - D2C] 

= GDIR - GDlD2C 

C f GD,D,C = GD,R 
I O  1 

[I + G D ~ D ~ ~ C  = G D ~ R  

c = [I + G D ~ D J -  G D ~ R .  

With R = 0, 

C '  = GDIEi + U 

E i  = -D2C' 

then, 

[I f GDlD2 C '  = U 

C '  = -GD1D2C' + U 

1 
c' = [I + G D ~ D J - ~  u 

From Equation ( l) ,  

C = KR 

also C = GE2 

therefore, 

GE2 = K R  

E2 = G - ~ K R .  

LII + GDI 

E quat ion 

L = [I 

DJ = I  

L +LGDlD2 = I  

LGD1D2 = I - L 
L G D ~  = [I - L] D Z ~  

56 
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from Equation (91, 

K =(I - LID;' 

therefore, 

L = I - KD2. 

Again from Fig. 1, 

E$ = -D1D2C' 

so LGEh = -LGD1D2C' 
- 
- -KY:l 

Eh = -G L KD2LU 

but since KD2 and L a r e  diagonal matrices,  
-1 

E4 = -G KD2U. 


